Efectos beneficiosos de las células vero sobre la capacidad de desarrollo de embriones bovinos producidos in vitro
Contenido principal del artículo
Resumen
El cocultivo de embriones es una alternativa efectiva para mejorar la capacidad de desarrollo de embriones producidos in vitro bajo condiciones subóptimas. Embriones bovinos producidos por las técnicas de fertilización in vitro (FIV) y clonación somática (CS) fueron cocultivados sobre monocapas células Vero y evaluados los porcentajes de desarrollo alcanzados. En los embriones obtenidos por FIV se observó un incrementó altamente significativo en el porcentaje de la primera división embrionaria 75,4 % (n=614/814) vs. 60,9 % (n=564/926) (p<0,0052), y la producción de blastocistos 17,8 % (n=145/814) vs. 8,1 % (p<0,0001), en ambos casos, en condiciones de cocultivo o no, con células Vero, respectivamente. En el grupo de embriones clonados se observaron diferencias significativas en la producción de blastocistos 28,9 % (n=193/668) vs 10,2 % (n=83/814) (p<0,0001) cocultivados con o sin células Vero, respectivamente. Se obtuvo un promedio de 101±61,0 núcleos/embrión (n=12 blastocistos) cuando fueron cocultivados en monocapas de células Vero. Los resultados confirman la capacidad del cocultivo con las células Vero para incrementar los porcentajes de producción de blastocistos bovinos por las técnicas de fertilización in vitro y clonación somática.
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cual estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que prohíbe el uso comercial de sus publicaciones y permite a terceros compartir la obra siempre que se indique su autor y la primera publicación en esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
Citas
Ferré LB, Kjelland ME, Strøbech LB, Hyttel P, Mermillod P, Ross PJ. Review: Recent advances in bovine. Animal. 2020;14(5):991-1004.
Cordeiro ALL, Satrapa RA, Gregianini HAG, Gregianini JTF, Maia GFN, Landim-Alvarenga FC. Influence of temperature-humidity index on conception rate of Nelore embryos produced in vitro in northern Brazil. Trop Anim Health Prod. 2020;52(3):1527-32.
Shakweer WME, Krivoruchko AY, Dessouki SM, Khattab AA. A review of transgenic animal techniques and their applications. J Genet Eng Biotechnol. 2023;21(1):55.
Bevacqua RJ, Fernandez-Martín R, Savy V, Canel NG, Gismondi MI, Kues WA, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system. Theriogenology. 2016;86(8):1886-96.e1.
Ménézo YJ, Servy E, Veiga A, Hazout A, Elder K. Culture systems: embryo co-culture. Methods Mol Biol. 2012;912:231-47.
Conway-Myers BA. Co-culture update: creating an embryotrophic environment in vitro. Semin Reprod Endocrinol. 1998;16(3):175-82.
Edwards LJ, Batt PA, Gandolfi F, Gardner DK. Modifications made to culture medium by bovine oviduct epithelial cells: changes to carbohydrates stimulate bovine embryo development. Mol Reprod Dev. 1997;46(2):146-54.
Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update. 1995;1(2):91-148.
Cardoso FC, Kalscheur KF, Drackley JK. Symposium review: Nutrition strategies for improved health, production, and fertility during the transition period. J Dairy Sci. 2020;103(6):5684-93.
Dovolou E, Giannoulis T, Nanas I, Amiridis GS. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals (Basel). 2023;13(11).
Souza-Cácares MB, Fialho ALL, Silva WAL, Cardoso CJT, Pöhland R, Martins MIM, et al. Oocyte quality and heat shock proteins in oocytes from bovine breeds adapted to the tropics under different conditions of environmental thermal stress. Theriogenology. 2019;130:103-10.
de Armas R, Solano R, Riego E, Pupo CA, Aguilar A, Ramos B, et al. Use of F1 progeny of HolsteinxZebu cross cattle as oocyte donors for in vitro embryo production and gene microinjection. Theriogenology. 1994;42(6):977-85.
Rosenkrans CF, First NL. Effect of free amino acids and vitamins on cleavage and developmental rate of bovine zygotes in vitro. J Anim Sci. 1994;72(2):434-7.
Parrish JJ. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology. 2014;81(1):67-73.
Parrish JJ, Susko-Parrish JL, Leibfried-Rutledge ML, Critser ES, Eyestone WH, First NL. Bovine in vitro fertilization with frozen-thawed semen. Theriogenology. 1986;25(4):591-600.
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Cloning Stem Cells. 2007;9(1):3-7.
Ammerman NC, Beier-Sexton M, Azad AF. Growth and maintenance of Vero cell lines. Curr Protoc Microbiol. 2008;Appendix 4:Appendix 4E.
Hajian M, Hosseini SM, Asgari V, Ostadhoosseini S, Forouzanfar M, Nasr Esfahani MH. Effect of Culture System on Developmental Competence, Cryosurvival and DNA-Fragmentation of In Vitro Bovine Blastocysts. Int J Fertil Steril. 2011;5(1):21-6.
Menck MC, Guyader-Joly C, Peynot N, Le Bourhis D, Lobo RB, Renard JP, et al. Beneficial effects of Vero cells for developing IVF bovine eggs in two different coculture systems. Reprod Nutr Dev. 1997;37(2):141-50.
Myers MW, Broussard JR, Menezo Y, Prough SG, Blackwell J, Godke RA, et al. Established cell lines and their conditioned media support bovine embryo development during in-vitro culture. Hum Reprod. 1994;9(10):1927-31.
Pegoraro LM, Thuard JM, Delalleau N, Guérin B, Deschamps JC, Marquant Le Guienne B, et al. Comparison of sex ratio and cell number of IVM-IVF bovine blastocysts co-cultured with bovine oviduct epithelial cells or with Vero cells. Theriogenology. 1998;49(8):1579-90.
Duszewska AM, Reklewski Z, Pieńkowski M, Karasiewicz J, Modliński JA. Development of bovine embryos on Vero/BRL cell monolayers (mixed co-culture). Theriogenology. 2000;54(8):1239-47.
Menezo Y, Hazout A, Dumont M, Herbaut N, Nicollet B. Coculture of embryos on Vero cells and transfer of blastocysts in humans. Hum Reprod. 1992;7 Suppl 1:101-6.
Fong CY, Bongso A. Comparison of human blastulation rates and total cell number in sequential culture media with and without co-culture. Hum Reprod. 1999;14(3):774-81.
Chen HF, Ho HN, Chen SU, Chao KH, Lin HR, Huang SC, et al. Peptides extracted from Vero cell cultures overcome the blastocyst block of mouse embryos in a serum-free medium. J Assist Reprod Genet. 1994;11(3):165-71.
Desai NN, Goldfarb JM. Growth factor/cytokine secretion by a permanent human endometrial cell line with embryotrophic properties. J Assist Reprod Genet. 1996;13(7):546-50.
Maeda J, Kotsuji F, Negami A, Kamitani N, Tominaga T. In vitro development of bovine embryos in conditioned media from bovine granulosa cells and vero cells cultured in exogenous protein- and amino acid-free chemically defined human tubal fluid medium. Biol Reprod. 1996;54(4):930-6.
Mermillod P, Vansteenbrugge A, Wils C, Mourmeaux JL, Massip A, Dessy F. Characterization of the embryotrophic activity of exogenous protein-free oviduct-conditioned medium used in culture of cattle embryos. Biol Reprod. 1993;49(3):582-7.
Ahumada CJ, Salvador I, Cebrian-Serrano A, Lopera R, Silvestre MA. Effect of supplementation of different growth factors in embryo culture medium with a small number of bovine embryos on in vitro embryo development and quality. Animal. 2013;7(3):455-62.
Sakagami N, Umeki H, Nishino O, Uchiyama H, Ichikawa K, Takeshita K, et al. Normal calves produced after transfer of embryos cultured in a chemically defined medium supplemented with epidermal growth factor and insulin-like growth factor I following ovum pick up and in vitro fertilization in Japanese black cows. J Reprod Dev. 2012;58(1):140-6.
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci. 2022;100(7).
Miranda MS, Nascimento HS, Costa MP, Costa NN, Brito KN, Lopes CT, et al. Increasing of blastocyst rate and gene expression in co-culture of bovine embryos with adult adipose tissue-derived mesenchymal stem cells. J Assist Reprod Genet. 2016;33(10):1395-403.
Baruselli PS, Sá Filho MF, Ferreira RM, Sales JN, Gimenes LU, Vieira LM, et al. Manipulation of follicle development to ensure optimal oocyte quality and conception rates in cattle. Reprod Domest Anim. 2012;47 Suppl 4:134-41.
Ferré LB, Alvarez-Gallardo H, Romo S, Fresno C, Stroud T, Stroud B, et al. Transvaginal ultrasound-guided oocyte retrieval in cattle: State-of-the-art and its impact on the in vitro fertilization embryo production outcome. Reprod Domest Anim. 2023;58(3):363-78.
Mikkola M, Hasler JF, Taponen J. Factors affecting embryo production in superovulated Bos taurus cattle. Reprod Fertil Dev. 2019;32(2):104-24.
Malin K, Witkowska-Piłaszewicz O, Papis K. The many problems of somatic cell nuclear transfer in reproductive cloning of mammals. Theriogenology. 2022;189:246-54.
Srirattana K, Kaneda M, Parnpai R. Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci. 2022;23(4).
Czernik M, Anzalone DA, Palazzese L, Oikawa M, Loi P. Somatic cell nuclear transfer: failures, successes and the challenges ahead. Int J Dev Biol. 2019;63(3-4-5):123-30.
Diez C, Heyman Y, Le Bourhis D, Guyader-Joly C, Degrouard J, Renard JP. Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability. Theriogenology. 2001;55(4):923-36.
Liu L, Shin T, Pryor JH, Kraemer D, Westhusin M. Regenerated bovine fetal fibroblasts support high blastocyst development following nuclear transfer. Cloning. 2001;3(2):51-8.
Li GP, White KL, Aston KI, Meerdo LN, Bunch TD. Conditioned medium increases the polyploid cell composition of bovine somatic cell nuclear-transferred blastocysts. Reproduction. 2004;127(2):221-8.
Ross PJ, Goissis MD, Martins JPN, Chitwood JL, Pursley JR, Rosa GJM, et al. Blastocyst Cell Number and Allocation Affect the Developmental Potential and Transcriptome of Bovine Somatic Cell Nuclear Transfer Embryos. Stem Cells Dev. 2023;32(17-18):515-23.
Rosenkrans CF, Zeng GQ, MCNamara GT, Schoff PK, First NL. Development of bovine embryos in vitro as affected by energy substrates. Biol Reprod. 1993;49(3):459-62.